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Provenance

• Shuttle launch relies on 
thousands of systems and 
millions of parts all working 
together correctly: enormously 
complex

• File systems for HEC are 
similarly complex - originates 
from many sources and 
synthesized by complex and 
sometimes hidden processes

• What does the data mean and 
how can we interpret and 
analyze it?
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Data Provenance

• Data provenance allows us to answer the following 
questions about the origin of data:

! Who or what contributed to the generation of this data?

! What is the data based upon?

! When was the data generated?

! Why was it generated?

! How was it generated?

• A history of the object from origin through 
subsequent modifications is evidenced by a 
provenance chain (DAG)
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End to End Provenance System

• Why another provenance collection system?

! Strong security guarantees

! Distributed provenance collection

! EEPS will achieve the above two goals efficiently in high 
end computing systems
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Secure Provenance Collection

• Provenance monitor (PM) analogous to reference 
monitor concept

• Three guarantees

! Complete mediation

! Tamperproofness

! Verifiability

• Beyond authentication of records

! Integrity/Trustworthiness of recording instrument and 
provenance-enhanced applications
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Project Initiatives
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Provenance Monitor

• Implementing LSM-based 
provenance monitor

! LSM for complete mediation, 
tamperproofing

• Tracking provenance of 
entire VM runs

! Created graph of entire process 
ancestry

! Investigated visualizations which 
included file reads/writes

• Exploring potential for 
secure multi-host and 
interdomain provenance

7



Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Autonomously Secure Disks

• Enforce security perimeter at external I/O interface

! How? Store all security metadata including provenance 
information within the drive itself
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Host Validation

• Portable storage holds more and is more ubiquitous 
than every before (256 GB flash drives)

! Public/private data on devices, want to share some info 
but protect other data

• How can we solve these issues?

! Only allow registered devices on system

! Virus scanning on flash drive

! General problem: How do we know if the system we share 
data with is in a good (valid) state? Can we collect a 
provenance record relating to this data?
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Kells

• USB storage device performs attestations with host 
in order to determine its integrity state

• Periodically repeat attestation to get continuous 
guarantee of host integrity

• Allow access to trusted partition only if system is in a 
good state
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Continuous Attestation

• Support framework for runtime monitoring on system

! Patagonix, Pioneer, BIND, LKIM, etc.

• Continuous attestation gives assurance that the system 
is in a good state

! Length of time between attestations can be parameterized by 

an attestation period "t

! Acts as security heartbeat

• Quarantine buffer on storage device 
holds writes until system state 
is attested
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Kells Security Properties
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• SEC: “Any read request 
completed by Kells was made 
while the host was in a good 
state.”

! attestation received within "t 
of the request and the system 
was not rebooted

KRead: 1. att = read D.RAM.att-loc
2. (t, req) = receive
3. n’ = sread req,att
4. send n’

Figure 6: The encoding of the Kells read operation

KWrite: 1. (t, req-pair) = receive
2. enqueue (t, req-pair)

KCommit: 1. att = read D.RAM.att-loc
2. (t, req) = peek
3. swrite req,att
4. dequeue

Figure 7: The encoding of the Kells write operation

(SEC) ! ∀ (treq, (l, n)), (tatt, sig), t s.t.
(treq, (l, n)) = Recv(D) @ t

∧ (tatt, sig) = Recv(D)
∧ e = SRead(D, (t, treq, (l, n)), (tatt, sig))
⊃ GoodState(H, (t, treq, (l, n)), (tatt, sig))

(INT) ! ∀ (t, treq, (l, n)), (tatt, sig) s.t.
(t, treq, (l, n)) = Peek(D)

∧ (tatt, sig) = Recv(D)
∧ SWrite(D, (t, treq, (l, n)), (tatt, sig))
⊃ GoodState(H, (t, treq, (l, n)), (tatt, sig))

Figure 8: The formal definition of the two Kells security properties.

To alleviate the need for loops, we make one assumption about the underlying hardware of the Kells device,
namely, that it has a hardware timer that can repeatedly call the program that performs commits from the
write request queue (KCommit in Figure 7).

We extend the language with three instructions for working with the Kells write request queue: enqueue,
dequeue and peek. The first two operations are straightforward and are assumed to be synchronized with
any other executing threads. The peek operation is needed to prevent a dequeued request from being lost
by KCommit in the event that a fresh attestation has not arrived after the request has been dequeued. This
is needed as existing statements prevent us from simply enqueueing the request again while waiting for a
fresh attestation. If the queue is empty, peek halts the current thread.

To capture Kells mediation, we add the checks for attestation freshness and verification into the seman-
tics of the read and write actions by introducing the sread and swrite actions. The semantics of
these two actions are shown in Figure 5. Both of these operations take a block I/O request and an attestation
as arguments. A block request (t, treq, (l, n)) from the host consists of the program counter at arrival time
t, an absolute arrival time treq and a sector offset and data pair.

The encoded version of the Kells read program (KRead) is shown in Figure 6. We assume the existence
of a running thread that is responsible for requesting new attestations from the host at a rate of ∆t and
placing the most recent attestation atD.RAM.att-loc. Lines 1. and 2. receive the attestation and request
from the host respectively. Line 3. invokes the secure read operation which runs to completion returning
either the desired disk blocks (sread) or an error (sreadD). Line 4. sends the resulting value to the host.

The encoded version of the Kells write program (KWrite) is shown in Figure 7. KWrite simply
receives the request from the host in line 1. and places it in the request queue at line 2. t contains the value
of ρ at the time the request was received. The majority of the write operation is encoded in KCommit,
which retrieves an enqueued request, arrival time and the most recent attestation, and performs an swrite.
Recall that KCommit runs once in a thread invoked by a timer since a timed loop is not possible in LS2.

6.2.2 Proof of Security Properties

The (SEC) and (INT) properties may be stated formally as shown in figure 8. Both properties ultimately
make an assertion about the state of a host at the time it is performing I/O using the Kells device. GoodState
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• INT: “Any write request 
completed by Kells was made 
while the host was in a good 
state.”

! same dependency on 

attestation received within  "t 
as with SEC

KRead: 1. att = read D.RAM.att-loc
2. (t, req) = receive
3. n’ = sread req,att
4. send n’

Figure 6: The encoding of the Kells read operation

KWrite: 1. (t, req-pair) = receive
2. enqueue (t, req-pair)

KCommit: 1. att = read D.RAM.att-loc
2. (t, req) = peek
3. swrite req,att
4. dequeue

Figure 7: The encoding of the Kells write operation

(SEC) ! ∀ (treq, (l, n)), (tatt, sig), t s.t.
(treq, (l, n)) = Recv(D) @ t

∧ (tatt, sig) = Recv(D)
∧ e = SRead(D, (t, treq, (l, n)), (tatt, sig))
⊃ GoodState(H, (t, treq, (l, n)), (tatt, sig))

(INT) ! ∀ (t, treq, (l, n)), (tatt, sig) s.t.
(t, treq, (l, n)) = Peek(D)

∧ (tatt, sig) = Recv(D)
∧ SWrite(D, (t, treq, (l, n)), (tatt, sig))
⊃ GoodState(H, (t, treq, (l, n)), (tatt, sig))

Figure 8: The formal definition of the two Kells security properties.

To alleviate the need for loops, we make one assumption about the underlying hardware of the Kells device,
namely, that it has a hardware timer that can repeatedly call the program that performs commits from the
write request queue (KCommit in Figure 7).

We extend the language with three instructions for working with the Kells write request queue: enqueue,
dequeue and peek. The first two operations are straightforward and are assumed to be synchronized with
any other executing threads. The peek operation is needed to prevent a dequeued request from being lost
by KCommit in the event that a fresh attestation has not arrived after the request has been dequeued. This
is needed as existing statements prevent us from simply enqueueing the request again while waiting for a
fresh attestation. If the queue is empty, peek halts the current thread.

To capture Kells mediation, we add the checks for attestation freshness and verification into the seman-
tics of the read and write actions by introducing the sread and swrite actions. The semantics of
these two actions are shown in Figure 5. Both of these operations take a block I/O request and an attestation
as arguments. A block request (t, treq, (l, n)) from the host consists of the program counter at arrival time
t, an absolute arrival time treq and a sector offset and data pair.

The encoded version of the Kells read program (KRead) is shown in Figure 6. We assume the existence
of a running thread that is responsible for requesting new attestations from the host at a rate of ∆t and
placing the most recent attestation atD.RAM.att-loc. Lines 1. and 2. receive the attestation and request
from the host respectively. Line 3. invokes the secure read operation which runs to completion returning
either the desired disk blocks (sread) or an error (sreadD). Line 4. sends the resulting value to the host.

The encoded version of the Kells write program (KWrite) is shown in Figure 7. KWrite simply
receives the request from the host in line 1. and places it in the request queue at line 2. t contains the value
of ρ at the time the request was received. The majority of the write operation is encoded in KCommit,
which retrieves an enqueued request, arrival time and the most recent attestation, and performs an swrite.
Recall that KCommit runs once in a thread invoked by a timer since a timed loop is not possible in LS2.

6.2.2 Proof of Security Properties

The (SEC) and (INT) properties may be stated formally as shown in figure 8. Both properties ultimately
make an assertion about the state of a host at the time it is performing I/O using the Kells device. GoodState
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Bottom Line: Provides formal proof that data is protected.
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Future Project Goals
• Revealing file access patterns

! What is “least privilege?”

! Forensic details of file and block access: “Which host 
accessed this particular data and where may that 
information have been disseminated?”

• Information flow systems

! Provenance as enriched information flows

• Provenance calculus

! Formalism for expressing and querying provenance data

! Working toward more rigorous definitions of provenance

! Potential for machine learning applications
13
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Performance Enhancements

• Provenance monitor profiling

! Enhanced profiling tools

! Profiling provenance collection for workloads from 
scientific domains

! EEPS calibration for a particular environment

! LSM instrumentation

• Cost models for provenance collection

! Hardware and storage requirements ($/GB)

! New cost models based on types of provenance data 
collected and system architectures
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Systems Problems

! Reliable high-volume data transmission from 
kernel to userspace

! Currently using Linux relay mechanism

! Investigating other means to increase reliability

! Inclusion of filenames in inode tracking

! LSM provides little context here

! Would provide additional information during analysis
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Distributed PM

• Challenges in distributed provenance

• Domain specific policies for:

! Auditors - confidentiality considerations

• Cryptographic commitments [Hasan’09]

! Divergent modification histories

• Plausible version history

• If necessary, plausible history may be checked against previous 
subjects in the ownership chain
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Distributed Environments
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Distributed Example
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Example: File transfer between hosts with untrusted OSes 
and trusted storage
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Distributed Example
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A program initiates a request for the file.
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Distributed Example
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A secure tunnel is established between disks through the 
untrusted OS.
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Distributed Example
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The document is transferred as normal.
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Distributed Example
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The destination disk checks the integrity once the write-
through is completed and appends a new provenance entry.
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Distributed Provenance Overheads

• Overhead increases monotonically as data is shared.

• Two implications:

! Storage costs within a single domain

• High sharing factor: redundant provenance data

• Long per-host modification histories: higher redundancy factor

• Even though document size may remain constant!

! Audit costs between domains

• As sharing of a document increases, the computational cost of 
sharing increases
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